Reg No.:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FOURTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), MAY 2019

Course Code: EC202

Course Name: SIGNALS & SYSTEMS

Max. Marks: 100 Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks.

Marks

(5)

- 1 a) Given the signal x(t). Sketch the signals:
 - (i) 2x(-2t+3) and (ii) $y(t) = x(t)\delta(t-0.5) + x(t)\delta(t+0.5)$

- b) Check whether the following signal is periodic or not. If periodic find the period. (3) $x(t) = 3 \sin 200\pi t + 4 \cos 100\pi t$
- c) An LTI system is characterized by the impulse response h(n) = [1, 2, 1]. Find the (7) system response for the given input x(n) = [3, -1, 2, 0, 1].
- 2 a) Determine whether the following signal is energy or power signal and calculate its energy or power. (4)

$$x(t) = \cos t$$

- b) Mathematically analyse the following LTI system for stability and causality. (4) $h(n) = a^n u(n), \ |a| < 1$
- c) An LTI system has the impulse response h(n) = u(n) u(n-3). Find the output of the system to the input $x(n) = \left(\frac{1}{3}\right)^n u(n)$. (7)
- 3 a) Derive the relation between correlation and convolution between two sequences. (5) Find the cross correlation of two finite length sequences x(n) = [1, 3, 2, 2] and y(n) = [1, 2, 3, 2].
 - b) Distinguish between causal and non-causal systems with suitable examples. (3)
 - c) Find the even and odd components of the following signals
 1) e^{jt} 2) cost + sint +cost sint

PART B

Answer any two full questions, each carries 15 marks.

- 4 a) Derive the relation between Laplace transform and Continuous Time Fourier (3) transform.
 - b) Evaluate the Fourier Transform of x(t) = sgn(t). Plot magnitude and phase (3) response.
 - c) An LTI system is characterized with the transfer function $H(s) = \frac{s+5}{s^2+3s+2}$. Find the response of the system to the input $x(t) = \cos 2t \ u(t)$.
 - d) State Sampling theorem. Compute the Nyquist rate of the signal x(t). (4)

$$x(t) = \cos\left(\frac{\pi t}{2}\right) - \sin\left(\frac{\pi t}{8}\right) + \cos\left(\frac{\pi t}{4} + \frac{\pi}{3}\right)$$

- 5 a) Determine the Fourier Series Representation for $x(t) = 2\sin(2\pi t 3) + \sin(6\pi t)$. (6)
 - b) Show that the spectrum of the sampled signal is the infinite sum of shifted replicas (6) of the spectrum of original signal.
 - c) Evaluate the Fourier Transform of $x(t) = \frac{d(te^{-2t}\sin(t)u(t))}{dt}$. (3)
- 6 a) A causal LTI system has an impulse response $h(t) = e^{-4t} u(t)$. Using Fourier (7) transform find,
 - (i) Frequency response of the system.
 - (ii) Output of the system for an input $x(t) = 3e^{-t} u(t)$.
 - b) State and prove the following properties of Laplace Transform

(4)

(4)

(4)

- (i) Time domain differentiation
- (ii) Final value theorem
- c) Find the Inverse Fourier transform of the following signals

(i)
$$\frac{1}{i\Omega(i\Omega+1)} + 2\pi\delta(\Omega)$$

(ii)
$$2\pi\delta(\Omega) + \pi\delta(\Omega - 4\pi) + \pi\delta(\Omega + 4\pi)$$

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) Find the Z transform of $x(n) = 2(3)^n u(-n)$ (5)
 - b) Compute the DTFT of the signal x(n).

$$x(n) = \begin{cases} 10 ; |\mathbf{n}| \le \mathbf{N} \\ 0 ; |\mathbf{n}| > \mathbf{N} \end{cases}$$

c) Prove that, for a BIBO stable discrete time LTI system the ROC of system (3) function includes unit circle.

d) An LTI system is described by the following input-output relation $y(n) - \frac{9}{4}y(n-1) + \frac{1}{2}y(n-2) = x(n) - 3x(n-1).$ (8)

Determine the impulse response of the system with specified ROCs of H(z) for the conditions:

- (i) System is stable (ii) System is causal
- 8 a) Find the discrete time Fourier series coefficients of the signal x(n) = 5 + (6) $sin\left(\frac{n\pi}{2}\right) + cos\left(\frac{n\pi}{4}\right)$. Plot the magnitude and phase spectrum.
 - b) Find all possible time domain signals for the Z- transform $X(z) = \frac{1}{1 \frac{1}{\epsilon} z^{-1} \frac{1}{\epsilon} z^{-2}}$. (6)
 - c) A stable and causal LTI system produces an output $y(n) = n \left(\frac{4}{5}\right)^n u(n)$, for the excitation $x(n) = \left(\frac{4}{5}\right)^n u(n)$. Using Discrete Time Fourier transform,
 - (i) Determine the Frequency response of the system.
 - (ii) Derive the difference equation relating the input and output.
- 9 a) Using Z- transform, determine the output of an LTI system with impulse response (3) $h(n) = \{1, 2, -1, 0, 3\}$ for the input $x(n) = \{1, 2, -1\}$.
 - b) Determine the Discrete Time Fourier transform of $x(n) = \left(\frac{1}{2}\right)^n \sin\left(\frac{n\pi}{4}\right) u(n)$. (4)
 - c) Compute the Z-transform and ROC of the signal $x(n) = \left(\frac{1}{2}\right)^n u(-n) 2^n u(-n-1)$. (8) Plot the pole-zero pattern.
 - d) Mathematically explain how DTFT is related with Z- transform. (5)